skip to main content


Search for: All records

Creators/Authors contains: "Großschedl, Josefa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We reconstructed the star formation history of the Sco-Cen OB association using a novel high-resolution age map of the region. We developed an approach to produce robust ages for Sco-Cen’s recently identified 37 stellar clusters using theSigMAalgorithm. The Sco-Cen star formation timeline reveals four periods of enhanced star formation activity, or bursts, remarkably separated by about 5 Myr. Of these, the second burst, which occurred about 15 million years ago, is by far the dominant one, and most of Sco-Cen’s stars and clusters were in place by the end of this burst. The formation of stars and clusters in Sco-Cen is correlated but not linearly, implying that more stars were formed per cluster during the peak of the star formation rate. Most of the clusters that are large enough to have supernova precursors were formed during the second burst around 15 Myr ago. Star and cluster formation activity has been continuously declining since then. We have clear evidence that Sco-Cen formed from the inside out and that it contains 100-pc long chains of contiguous clusters exhibiting well-defined age gradients, from massive older clusters to smaller young clusters. These observables suggest an important role for feedback in forming about half of Sco-Cen stars, although follow-up work is needed to quantify this statement. Finally, we confirm that the Upper-Sco age controversy discussed in the literature during the last decades is solved: the nine clusters previously lumped together as Upper-Sco, a benchmark region for planet formation studies, exhibit a wide range of ages from 3 to 19 Myr.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Barnard’s Loop is a famous arc of Hαemission located in the Orion star-forming region. Here, we provide evidence of a possible formation mechanism for Barnard’s Loop and compare our results with recent work suggesting a major feedback event occurred in the region around 6 Myr ago. We present a 3D model of the large-scale Orion region, indicating coherent, radial, 3D expansion of the OBP-Near/Briceño-1 (OBP-B1) cluster in the middle of a large dust cavity. The large-scale gas in the region also appears to be expanding from a central point, originally proposed to be Orion X. OBP-B1 appears to serve as another possible center, and we evaluate whether Orion X or OBP-B1 is more likely to have caused the expansion. We find that neither cluster served as the single expansion center, but rather a combination of feedback from both likely propelled the expansion. Recent 3D dust maps are used to characterize the 3D topology of the entire region, which shows Barnard’s Loop’s correspondence with a large dust cavity around the OPB-B1 cluster. The molecular clouds Orion A, Orion B, and Orionλreside on the shell of this cavity. Simple estimates of gravitational effects from both stars and gas indicate that the expansion of this asymmetric cavity likely induced anisotropy in the kinematics of OBP-B1. We conclude that feedback from OBP-B1 has affected the structure of the Orion A, Orion B, and Orionλmolecular clouds and may have played a major role in the formation of Barnard’s Loop.

     
    more » « less